
Eur. Phys. J. D 39, 49–57 (2006)
DOI: 10.1140/epjd/e2006-00079-1 THE EUROPEAN

PHYSICAL JOURNAL D

Modulational instability of dust acoustic waves in a dusty plasma
with nonthermal electrons and ions

A.P. Misra1,2 and A. Roy Chowdhury2,a

1 Department of Mathematics, Siksha Bhabana, Visva-Bharati University Santiniketan-731 235, India
2 High Energy Physics Division, Department of Physics, Jadavpur University Kolkata-700 032, India

Received 31 October 2005 / Received in final form 19 December 2005
Published online 11 April 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. Effects of nonadiabaticity of variable dust charge, dust fluid temperature, trapped electrons as
well as nonisothermality of ions on the amplitude modulation of dust acoustic waves in an unmagnetized
dusty plasma are investigated. A modified nonlinear Schrödinger equation (NLSE) is obtained by the
standard reductive perturbation technique and is solved numerically by the split-step Fourier method. The
modulational instability and the envelope solitary wave structure are found to be modified somewhat by
the effects of nonthermally distributed ions and trapped electrons.

PACS. 52.35.Sb Solitons; BGK modes – 52.35.Mw Nonlinear phenomena: waves, wave propagation,
and other interactions – 52.30.Ex Two-fluid and multi-fluid plasmas – 52.35.-g Waves, oscillations, and
instabilities in plasmas and intense beams

1 Introduction

Theoretical as well as experimental investigations on mod-
ulational instability of ion-acoustic and dust acoustic
waves in a dispersive and nonlinear plasma medium have
been increasing because of their possible applications in
space physics, astrophysics and also in many laboratory
situations. By incorporating the effects of harmonic gen-
eration and ponderomotive nonlinearities, many authors
have derived the nonlinear Schrödinger equation (NLSE)
which governs the dynamics of the nonlinear modulated
acoustic wave packet and the structure of the envelope
solitary wave [1–10]. In the NLSE the nonlinearities are in
great balance with the wave group dispersion. Theoretical
investigations suggest that the presence of dust fluid tem-
perature, nonadiabatic dust charge variation can affect the
modulational instability of the dust acoustic wave [6].

When streaming particles be injected in a plasma, it
has been found that instead of developing into a turbu-
lent one, they evolve towards a coherent trapped particle
state [11]. When an amplitude of a nonlinear wave be-
comes large, some electrons are trapped and carried out
along with the wave. It is to be mentioned that the in-
clusion of trapped electrons or ions gives rise nonlinear
phenomena of waves. However, it has been found that
the electron and ion distributions play a significant role
in characterizing the physics of nonlinear waves [12–15].
They offer considerable increase in richness and varieties
of wave motions which can exist in plasmas. Also, the
inclusion of thermal effects affects the nature of wave-
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particle interaction and possibility of having nonisother-
mal electron distribution in the potential well instead of
the usual Boltzmannian. When the amplitude of the non-
linear wave becomes large, electrons are trapped in the
potential trough, and as matter of fact the trapping of
electrons is not a question of strength of the amplitude.
The trapping of plasma particles which as a nonlinear pro-
cess violates the linear wave ansatz is known from the
early days of Plasma Physics [16] and is valid even for
small amplitude limit, as proposed, probably for the first
time by Holloway et al. [17] and later approved and con-
firmed by Schamel [18]. The trapped particle structures,
observed in the experiments of Risoe-group, have been in-
terpreted in terms of electron hole equilibria [19,20]. The
electron hole is a purely nonlinear phenomena and is due
to the particle trapping. The electron hole has been found
to be related with the slow electron-acoustic mode which
is usually absent in plasma. It can exist due to nonlin-
ear distortions of the electron distribution function. Like
ion-acoustic solitons an upper limit for the strength of the
electron trapping has been found [19]. Effects of trapped
electrons, ions, two-temperature ions for the formation of
KdV (Korteweg-de Vries) solitons, double layers are inves-
tigated by a number of authors [13–15,21]. But up to now,
no one has considered the effects of trapped electrons, non-
thermal ions and nonadiabatic dust charge variations all
together to study the modulational instability and enve-
lope solitary structure of the dust acoustic waves (DAW).

Our paper is organized as follows: in Section 2, the ba-
sic equations describing the dust dynamics are presented
and the modified NLSE is derived. Section 3 is devoted to
study the modulational instability and the structure of the
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envelope solitary wave. Lastly, in Section 4, the conclusion
is presented.

2 Basic equations and the derivation of NLSE

We consider the propagation of dust acoustic wave in an
unmagnetized collisionless plasma consisting of extremely
massive and highly negatively charged warm dust grains of
equal radii, positively charged nonisothermal ions together
with free and trapped electrons. Thus, at equilibrium the
overall charge neutrality condition gives

δ2 = 1 + δ1 (1)

where δ2 = ni0/Zd0nd0, δ1 = ne0/Zd0nd0 with nα0, α = e,
i, d respectively stand for unperturbed number densities
for electron, ion and dust, and Zd0 is the number of elec-
trons residing on the dust grain surface. The nonlinear
dynamics of the DA waves in such a dusty plasma is gov-
erned by

∂nd

∂t
+

∂

∂x
(ndud) = 0 (2)

∂ud

∂t
+ ud

∂ud

∂x
+ 3σdnd

∂nd

∂x
− Zd

∂φ

∂x
= 0 (3)

∂2φ

∂x2
= Zdnd + ne − ni (4)

where nd and ud are the dust number density and dust
fluid velocity normalized to Zd0nd0 and Cd(dust acoustic
speed)=

√
Zd0Teff /md with Teff = Zd0nd0TiTe/(ni0Te +

ne0Ti);Ti, Te being the ion and electron temperature and
md the dust mass; φ is the electrostatic potential normal-
ized to Teff /e with e being the elementary charge. Also
σd = Td/(Zd0Teff ). Moreover, the space coordinate (x)
and time (t) are normalized to the Debye length λD =√
Teff /4πZd0nd0e2 and the inverse of the dust plasma

frequency ωpd =
√

4πZ2
d0e

2nd0/md. The third term pro-
portional to σd in equation (3) arises from the pressure
gradient force ∇p where we have used the thermodynamic
equation of state p = Cnγ

d where C is a constant and γ
is the ratio of specific heats and γ = (2 + N)/N, N be-
ing the number of degrees of freedom. For nonisothermal
compression we take N = 1, so that γ = 3. The validity
of the equation of state requires that heat flow be negli-
gible, i.e., that thermal conductivity be low. Fortunately,
most basic phenomena can be described adequately by the
crude assumption of equation p = Cnγ

d [6,14,15]. In equa-
tion (3) we did not take into account the ion-drag force on
the assumption that the electrostatic force dominates over
the ion-drag and neutral-drag force. The ion-drag force
exerted on a negatively charged dust grains by ion flows
ubiquitous in discharge plasmas contributes significantly
to the dust transport, formation of equilibrium dust layers
and formation of various structures in complex plasmas.
In addition to the drag due to the direct collection of ions
and to momentum transfer by ions in the electric field near
grains, dust grains can also be subject to a drag force due
to the effect of coherent waves, such as DAWs that can

grow due to the drift of plasma ions relative to charged
grains because of an imposed electric field. This force has
been extensively studied by a number of authors both the-
oretically and experimentally [22]. Recently, Yaroshenko
et al. [22c] published a paper dealing with the determi-
nation of the ion-drag force in a complex plasma. They
obtained the said force as a function of a gas pressure
(over a pressure range 20–120 Pa). The regime they also
investigated where the ion-drag and neutral-drag is much
weaker than the electric force. They also pointed out that
the particle charge Zd and ion-drag force (Fi) are in gen-
eral unknown functions of the neutral gas pressure. The
dependencies of Zd and Fi on p arise due to the variations
of the plasma parameters viz., plasma densities, ion-drift
velocity, electron temperature, screening length, mean free
path etc. with the gas pressure. For the stable particle flow
we have

Fn = FE + Fi,

where Fn, FE , Fi respectively stand for neutral-drag, elec-
trostatic and ion-drag forces. However, Yaroshenko et al.
have shown that at p ∼ 120 Pa, for a fixed Fi/FE = 0.1,
Fn/FE = 0.9 and for the charge profiles, at p ∼ 20 Pa,
Fi/FE = 0.6(0.5), Fn/FE = 0.4(0.5) for small par-
ticles (large grains). This means that FE remains the
principal force determining the direction of the parti-
cle flow as always observed in the experiment. However,
at argon gas pressure (p ∼ 0.2 Pa) with Te = 2 eV,
Ti = 0.1 eV, ni0/ne0 = 10 it can be estimated that
νdn/ωpd ∼ 10−3. But at a higher pressure the same
can be treated as a first order quantity, so that it may
introduce a damping term in the linear equations. In
our plasma model we have neglected the ion-drag force
due to ion-dust and dust-ion collisions and the frictional
force due to neutral-dust collisions. In a dusty plasma,
the ratios of ion-dust and neutral-dust collisions are
νdi/νid ∼ mini/mdnd and νdn/νnd ∼ mnnn/mdnd. For a
typical dusty argon plasma with mi/md ∼ 10−20–10−10,
mn/md ∼ 10−14–10−10, ni/nd ∼ 105, nn/nd ∼ 108,
νdi/νid ∼ 10−15–10−5 and νdn/νnd ∼ 10−6–10−2 In
our numerical calculations we have considered mi/md ∼
10−16,mn/md ∼ 10−14, ni/nd ∼ 105, nn/nd ∼ 108 (other
parameters as above) for a dusty argon plasma and ne-
glected the collisional effects.

The dust charge dynamics is governed by the following
normalized orbital motion limited charge current balance
equation

τch

τd

(
∂Zd

∂t
+ ud

∂Zd

∂x

)
= − τch

Zd0e
(Ie + Ii). (5)

Assume that the streaming velocities of electrons and ions
are much smaller than their thermal velocities, the elec-
tron and ion currents (Ie, Ii) for spherical grains of equal
radii a are given by

Ie = −πa2e

√
8Te

πme
ne exp(sσiΨ) (6)

Ii = πa2e

√
8Ti

πmi
ni(1 − sΨ). (7)
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In equation (5) τd = ω−1
pd is the hydrodynamic time scale

and τch the dust charging time scale given by

τ−1
ch =

√
8πa2eδ2VTisΨ0(1 + σi (1 − sΨ0)) (8)

where σi = Ti/Te, VTi = Ti/mi, s = 1/(δ2 + δ1σi), Ψ = e
Φd/Teff , Φd being the dust grain surface potential relative
to the plasma potential given by

Ψ0 = ln [αδ(1 − sΨ0)] /sσi (9)

where α =
√
σi/m,m = mi/me ≈ 1844 and δ = ni0/ne0.

The applicability of the charging equation (5) in the case
of strong nonlinearity and particle trapping has been dis-
cussed extensively in reference [20].

In the dynamical system, some of the electrons are at-
tached to form charged dust grains and some remaining
are bounded back and forth in the potential well loosing
energy continuously and thereby trapped. Schamel [12a]
presented a new method for constructing a smooth dis-
tribution for the trapped particles. Thus, in our system
the electron number density in normalized form which is
obtained by taking first moment of Schamel’s distribution
function as

ne(φ) =
ne0

nd0Zd0

[

exp(Γ)erfc(
√

Γ)

+
1

√|βh|

{
exp(Γβh)erf(

√
Γβh) βh ≥ 0

2√
π

exp(Γβh)
∫ √−Γβh

0
exp(t2)dt βh < 0

]

(10)

where Γ = eφ/Te, βh = Te/Tt with Tt the trapped electron
temperature. The electron density includes four types of
distributions namely, (i) the Maxwellian where βh → 1,
(ii) the flat topped one where βh = 0, (iii) a hole in
the trapped region representing a vortex type distribution
where βh < 0 and (iv) the fourth type where 0 < βh < 1.
In our plasma model we assume 0 < βh < 1. Now expand-
ing equation (10) for small arguments by Taylor series we
write the expression for ne [14] as

ne ≈ δ1
[
1 + (sσiφ) + (sσiφ)2 −G(sσiφ)

]
(11)

where

G(x) =
2∑

k=1

[
2k+1bkx

(2k+1)/2/
∏

(2k + 1)
]

(12)

with bk = (1−βk
h)/

√
π. On the other hand, the ion density

distribution is assumed to describe by the following [23,24]

ni = δ2
(
1 + βφ + βφ2

)
exp(−sφ)

i.e.,

ni ≈ δ2

[
1 + (β − s)φ+

[
β(1 − s) +

1
2
s2

]
φ2

]
(13)

for small arguments. Here β = 4η/(1 + 3η) with η being
a parameter determining the number of nonthermal ions.

Mendonza-Briceno et al. [23] used such type of distribu-
tion for nonthermal ions in a dusty plasma and they found
that the nonthermality of ions can significantly change the
nature of the Dust-acoustic waves. It is to be mentioned
that another way of deviation from the usual Boltzmann
distribution of ions would be to take into account the ef-
fects of trapped ions which would lead to an expression
like equation (10) for the ion density.

In order to investigate the amplitude modulation of
DAW in our plasma we employ the standard reductive
perturbation technique to obtain NLSE with the stretch-
ing: ξ =

√
ε(x − vgt), τ = εt where ε is a small parameter

which usually reflects directly the strength of the wave
amplitude and vg is the group velocity of the wave. The
dynamical variables are expanded as:

nd = 1 +
∞∑

n=1

εn/2
∞∑

l=−∞
n

(n)
l (ξ, τ) exp(ikx− iωt)l (14)

ud =
∞∑

n=1

εn/2
∞∑

l=−∞
u

(n)
l (ξ, τ) exp(ikx− iωt)l (15)

φ =
∞∑

n=1

εn/2
∞∑

l=−∞
φ

(n)
l (ξ, τ) exp(ikx− iωt)l (16)

Zd = 1 +
∞∑

n=1

εn/2
∞∑

l=−∞
Z

(n)
l (ξ, τ) exp(ikx− iωt)l (17)

where n
(n)
l , u

(n)
l etc. satisfy the reality condition

A
(n)
l = A

(n)∗
l and the asterisk denotes the complex con-

jugate. Typically, the dust charging time scale is of the
order of 10−6–10−5 s, so that τch � τd and we can as-
sume that τch/τd = µε where µ is a finite quantity of
the order of unity. Now substituting the expressions (11),
(13–17) into equations (2–5) and collecting the terms in
different powers of ε we obtain for n = 1, l = 1 the first
order quantities:

n
(1)
1 = − k2

ω2 − 3σdk2
φ

(1)
1 (18)

u
(1)
1 = − ωk

ω2 − 3σdk2
φ

(1)
1 (19)

Z
(1)
1 = γ1φ

(1)
1 . (20)

The dispersion relation is then obtained for the DAW from
equations (18–20) as:

ω2 = 3σdk
2 +

k2

1 − βδ2 + γ1 + k2
(21)

where the variable γ1 for the dust charge fluctuation effect
is given by

γ1 =
(1 + σi − β/s)(1 − sΨ0)

Ψ0(1 + σi(1 − sΨ0))
. (22)
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The second order (n = 2) reduced equations with l = 1
give

n
(2)
1 = 2ki

∂φ
(1)
1

∂ξ
− k2

ω2 − 3σdk2
φ

(2)
1 (23)

u
(2)
1 =

i

ω

(
ω2 + 3σdk

2
) ∂φ(1)

1

∂ξ
− ωk

ω2 − 3σdk2
φ

(2)
1 (24)

Z
(2)
1 = γ1φ

(2)
1 (25)

together with the compatibility condition:

vg ≡ ∂ω

∂k
=
ω2 − (ω2 − 3σdk

2)2

ωk
. (26)

The second harmonic modes (n = 2, l = 2) arising from
the nonlinear self-interaction of the carrier wave are ob-
tained in terms of [φ(1)

1 ]2 as:

φ
(2)
2 = A

[
φ

(1)
1

]2

(27)

n
(2)
2 = B

[
φ

(1)
1

]2

(28)

u
(2)
2 = C

[
φ

(1)
1

]2

(29)

Z
(2)
2 = D

[
φ

(1)
1

]2

(30)

where the coefficients A,B,C,D are given as follows:

A =

[{
1
2

(
−G+

√
G2 + 4H3

)}1/3

+
{

1
2

(
−G−

√
G2 + 4H3

)}1/3

+
2
3
b1δ1(sσi)3/2

]2

/E2 (31)

G =
1
6
E(sσi)3/2 {(b2δ1sσi − 3b1γ1)E + 4b1δ1F}

− 16
27

{
b1δ1(sσi)3/2

}3

(32)

H =
1
9

[
3EF − 4b21δ

2
1(sσi)3

]
(33)

E =
1
2

k2

(ω2 − 3σdk2)3
+ δ1sσi − δ2(β − s) + 4k2 − γ1

(34)
E1 = 3k2

(
ω2 + σdk

2
) − γ1(ω2 − 3σdk

2)2 (35)

E2 =
s

2

(
1 − σ2

i

αδ
(1+γ1Ψ0)2

)
−β(1 − 1/s) − γ1Ψ0(β − s)

(36)

F =
1
2
δ1(sσi)2 − δ2

{
β(1 − s) + s2/2

}

− k2E1

ω2 − 3σdk2

[
γ1 +

1
2(ω2 − 3σdk2)2

]

− E2

Ψ0 (1 + σi(1 − sΨ0))
(37)

B =
(E1 −A)k2

2(ω2 − 3σdk2)3
(38)

C =
ωk

2(ω2 − 3σdk2)3
{
k2(ω2 + 9σdk

2)

−γ1(ω2 − 3σdk
2)2 −A

}
(39)

D =
E2

Ψ0 (1 + σi(1 − sΨ0))
+ γ1

(
A+

1
2
b1(sσi)3/2/

√
A

)
.

(40)

Similarly, the zeroth harmonic modes which appear due
to the self-interaction of the modulated carrier wave are
obtained for l = 0, n = 2 as:

φ
(2)
0 = A0|φ(1)

1 |2 (41)

n
(2)
0 = B0|φ(1)

1 |2 (42)

u
(2)
0 = C0|φ(1)

1 |2 (43)

Z
(2)
0 = D0|φ(1)

1 |2 (44)

where the coefficients A0, B0, C0, D0 are

A0 = [4E2 − Ψ0(1 + σi(1 − sΨ0))A1]/A2 (45)

A1 =
2k2

ω2 − 3σdk2

{
γ1 +

ωkvg

(3σd − v2
g)(ω2 − 3σdk2)

}

− δ1(sσi)2 + 2δ2
[
β(1 − s) + s2/2

]
(46)

A2 = (1 − sΨ0)(1 + σi − β/s) − Ψ0 [1 + σi(1 − sΨ0)]
× {

sσiδ1 − (β − s)δ2 + (3σd − v2
g)−1

}
(47)

B0 =
1

3σd − v2
g

[
A0 − 2ωvgk

3

(ω2 − 3σdk2)2

]
(48)

C0 =
1

3σd − v2
g

[
A0vg − 6ωσdk

3

(ω2 − 3σdk2)2

]
(49)

D0 = [(1 − sΨ0)(1 + σi − β/s)A1

−4E2

{
sσiδ1 − (β − s)δ2 + (3σd − v2

g)−1
}]
/A2.

(50)

Finally, substitutions of all the above derived expressions
into the l = 1 component of the third order part (n = 3) of
the reduced equations lead to the following modified NLSE
for the DA waves with trapped electrons and nonthermal
ions

i
∂φ

∂τ
+ P

∂2φ

∂ξ2
+Q|φ|2φ = iRφ (51)

where φ ≡ φ
(1)
1 and the coefficients P,Q,R are given by

P = −3(ω2 − 3σdk
2)

2ω2k

[−4σdkω + vg(ω2 + σdk
2)

]
(52)

Q = − (ω2 − 3σdk
2)2

2ωk2

[
λ4 − sΨ0λ3(1 + σi(1 − sΨ0))

sΨ0(1 + σi(1 − sΨ0))

+
ωλ1 + kλ2

ω2 − 3σdk2

]
(53)

R = (ω2 − 3σdk
2)2Zd0eγ1µ/2k2 (54)

λ1 =
k3

ω2 − 3σdk2

{
C + C0 +

ω

k
(B + B0)

}
(55)

λ2 =
k2

ω2 − 3σdk2
{ω(C + C0) + 3σdk(B + C0)}

+ k(2Aγ1 +D0 −D) (56)
λ3 = (A+A0)

[
δ1(sσi)2 − 2δ2

{
β(1 − s) + s2/2

}]

+
1
2

[
δ1(sσi)3 + sδ2

{
3β(2 − s) + s2

}]

+
(D +D0)k2

ω2 − 3σdk2
− (B +B0)γ1 (57)

λ4 = − (sσi)2

αδ
(1 + Ψ0γ1)

[
A+A0

+ ψ0(D +D0) +
1
2
sσi(1 + Ψ0γ1)2

]

+ (A+A0)
[
2

{
β(1 − s) + s2/2

}

−s(β − s)Ψ0γ1] − sΨ0(β − s)(D +D0). (58)
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Fig. 1. The variation of Q with respect to k for different values
of β = 0, 0.1, 0.3, 0.5 and for fixed δ = 70, σi = 0.5, βh = 0.4.

We find in equation (51) that the coefficient of the disper-
sive term (P ) remains unchanged as in reference [6], while
that of the nonlinear term (Q) gets modified due to the
presence of both the trapped electrons and nonisothermal
ions. The additional term iRφ which represents the nona-
diabiticity of dust charge variations is modified only by
the nonthermal ions (as compared with the term −iΓφ in
Ref. [6]). In absence of trapped electrons and nonthermal
ions, i.e., for bk = 0, k = 1, 2;β = 0 we can recover the
same NLSE as in reference [6]. Hence, it follows that the
propagation characteristics and the modulational instabil-
ity of the DA waves in our dusty plasma system will be
modified somewhat.

3 Modulational instability and the envelope
soliton

A standard modulational instability analysis [3,6] of the
DAW shows that the wave becomes modulationally unsta-
ble when PQ > 0 in the wave number region K2 < K2

c (τ)
with K2

c = (2Q/P )|φ0|2 exp(2Rτ). The instability growth
rate is obtained as

	Ω(τ) = PK2

√
K2

c

K2
− 1 (59)

where Ω represents the modulational frequency. The max-
imum growth rate at K = Kc/

√
2 is Q|φ0|2 exp(2Rτ).

Which shows that the maximum instability growth rate
is proportional to the nonlinearity Q and the amplitude
of the pump carrier wave φ0, but inversely proportional
to the nonadiabaticity of the dust charge variation R. We
recall that P is unaffected by the new parameters β, βh;
Q is affected by both of them and R is only by β. Figure 1
shows the variation of Q with respect to k for different
values of β = 0, 0.1, 0.3, 0.5 and for fixed δ = 70, σi =
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Fig. 2. The plot of PQ vs. k for different values of β = 0, 0.15,
0.35, 0.5 and for fixed δ = 70, σi = 0.5, βh = 0.4 showing the
stability and instability regions.
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Fig. 3. The variation of Q with respect to k for different values
of βh = 0.5,−0.5, 3.5,−3.5 and for fixed δ = 80, σi = 0.3,
β = 0.3.

0.5, βh = 0.4. We find that for k < 0.23, Q > 0 at
β = 0, 0.1, 0.3 whereas Q < 0 at β = 0.5, i.e., as β in-
creases Q tends to become negative at short range of k
and the range of values of k increases as β(< 1) increases.
Figure 2 shows that the range of k for which the wave be-
comes unstable (PQ > 0) increases for increasing values
of β. It is also clear that for isothermal ions β = 0 the
wave packet becomes unstable in the long-wave length re-
gion, whereas in case of nothermal ions a critical value of β
must exist for the instability in the long-wave length run.
Figures 3 and 4 show the variation of Q with k for fixed
δ = 80, σi = 0.3 and for different values of β and βh. From
Figure 4 it is clear that the nonthermality of electrons and
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Fig. 4. The thermal and nonthermal effects of electrons and
ions on the variations of Q with respect to k for β = 0, βh = 1
and for β = 0.3, βh = 0.5 where δ = 80, σi = 0.3.
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Fig. 5. The stability and instability regions: the plot of PQ
vs. k for different values of βh = 0.5,−0.5, 3.5,−3.5 and other
parameter values as in Figure 3.

ions is to make Q negative in the short range k < 0.2 and
positive in the comparatively long k-range (k > 0.87).
Figures 5 and 6 show the stability and instability regions
for various β and βh values and for fixed δ = 80, σi = 0.3.
We find that the nothermal electrons and ions play crucial
role to cause modulational instability. In Figures 7 and 8,
the variations of Q,PQ are shown for different σi-values
and for fixed δ = 90, β = 0.2, βh = 0.5. Form Figure 8,
it is clear that the instability region in a fixed k-domain
is greater at σi = 0.3. Figure 9 shows that as β increases
the magnitude of the nonadiabaticity R decreases in the
short-wave length run. It is to be mentioned that an exact
analytic solution of the NLSE (51) is not possible, except
for some cases where an inverse scattering transformation
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Fig. 6. The thermal and nonthermal effects on the stability/
instability regions. PQ vs. k diagram; parameter values are as
in Figure 5.
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Fig. 7. The variation of Q with respect to k for different values
of σi = 0.3, 0.4, 0.5, 0.7 and for fixed δ = 90, β = 0.2, βh = 0.5.

method [25] can be applied for this purpose. For example,
when PQ > 0 we have the perturbation solution [6] for
small R

φ =

2iφ0 exp(2Rτ)sech

(

2φ0 exp(2Rτ)

√
Q

2P
(ξ +

√
2PQcτ)

)

× exp

[

−i
√

Q

2P

(

cξ + c2
√
PQ

2
τ

+
φ2

0

R

√
PQ

2
(exp(4Rτ) − 1)

)]

(60)
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Fig. 8. The same as in Figure 5, but for different σi = 0.3,
0.4, 0.5, 0.7. The other parameter values are the same as for
Figure 7.
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Fig. 9. The variation of R with k for β = 0, 0.3, 0.5, 0.8 where
δ = 50, σi = 0.2.

where c is a constant. It is clear from equation (60) that as
time elapses the amplitude of the envelope solitary wave
tends to decrease exponentially. The nonadiabaticity of
dust charge variations is to cause a damping effect, which
can be minimized at higher value of β(< 1) (Fig. 9) in the
long-wave length region. Another form of envelope soliton
(PQ > 0) can be obtained for R = 0 [9] as

φ = φ0sech

(√∣
∣
∣
∣
Q

2P

∣
∣
∣
∣φ0ξ

)

exp(iσ(ξ, τ)) (61)

where σ is a real constant. On the other hand, for PQ < 0
the wave can propagate in the form of an envelope hole

Fig. 10. The initial (solid line) and final pulse shapes for
isothermally distributed electrons and ions (β = 0, βh = 1).
The dotted and dashed line correspond to P = −3.04 × 10−3,
Q = −10.0, R = −0.25 × 10−5 at k = 0.495 and P =
−3.03 × 10−3, Q = −7.98, R = −0.84 × 10−6 at k = 0.848
respectively. Other parameter values are δ = 90, σi = 0.3.

(dark soliton) or envelope shock [9]. In order to solve our
problem, it is therefore necessary a numerical approach for
an understanding of the nonlinearities. A large number of
numerical methods can be used for this purpose (please
refer to Refs. [49–64] in chapter two of “Nonlinear Fiber
Optics”, third edn., by G.P. Agrawal). However, one best
is the split-step Fourier method [26]. To this end we recast
the NLSE as

i
∂φ

∂τ
+

1
2
∂2φ

∂ξ2
+ |φ|2φ = i

R

Q
φ (62)

where we have made the normalizations: τ → τQ, ξ →
ξ
√

(Q/2P ). The initial (sech(ξ
√

(Q/2P ))) and final pulse
shapes, and the initial and final pulse spectra (Fourier
transformed) in case of thermal and nonthermal electrons
and ions are shown in Figures 10, 11 and 12, 13. For
Figures 10 and 11 we have taken δ = 90, σi = 0.3, β =
0, βh = 1. We find from Figure 10 that the soliton pulse
height for P ≈ −3.03 × 10−3, Q ≈ −7.98 at k = 0.848 is
greater than that for P ≈ −3.04 × 10−3, Q ≈ −10.0 at
k = 0.495. On the other hand, Figure 12 where we have
taken δ = 90, σi = 0.3, β = 0.3, βh = 0.5 shows that the
pulse height for P ≈ −3.04×10−3, Q ≈ −0.85 at k = 0.244
is greater than those for P ≈ −3.04 × 10−3, Q ≈ −10.1
at k = 0.429 and for P ≈ −3.03 × 10−3, Q ≈ −4.2 at
k = 0.914. That is, the nonthermality of electrons and
ions changes qualitatively the soliton shapes quite distinct
from the isothermal ones.
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Fig. 11. The initial (solid line) and final pulse spectra for
isothermally distributed electrons and ions (β = 0, βh = 1).
The dotted and dashed line correspond to the same as in Fig-
ure 10.

Fig. 12. The initial (solid line) and final pulse shapes for non-
thermally distributed electrons and ions (β = 0.3, βh = 0.5).
The dotted, dashed and dash-dotted line correspond to P =
−3.04× 10−3 , Q = −0.85, R = −0.78× 10−5 at k = 0.245, P =
−3.04 × 10−3, Q = −10.1, R = −0.25 × 10−5 at k = 0.429 and
P = −3.03 × 10−3, Q = −4.2, R = −0.56 × 10−6 at k = 0.914
respectively. Other parameter values are δ = 90, σi = 0.3.

4 Conclusions

In our above analysis we have tried to modify the previous
work [6] by incorporating the effects of trapped electrons
and nonisothermal ions. A modified NLSE describing the
slow modulation of DA waves in an unmagnetized warm
dusty plasma with nonadiabaticity of dust charge varia-
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Fig. 13. The initial and final pulse spectra for nonthermally
distributed electrons and ions (β = 0.3, βh = 0.5). The dot-
ted, dashed and dash-dotted line correspond to the same as in
Figure 12.

tions, trapped electrons and nonthermally distributed ions
is derived by the standard reductive perturbation tech-
nique and is solved numerically by the split-step Fourier
method. The effects of trapped electrons and nonthermal
ions on the modulational instability and soliton structures
are discussed. It is found that by these effects the instabil-
ity domains for the wave packet are significantly changed,
and the soliton pulse width and amplitude are somewhat
modified. It is to be mentioned that the inclusion of trap-
ping of ions caused by the ion-neutral collisions will be an
another important investigation in this nonlinear analysis,
but beyond the scope of the present work.

The authors wish to thank the referees for their valuable com-
ments which improved the paper in its present form.
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